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Figure 1. Phenotypes of Zhangshugang and 9704A. a Mature anther phenotypes of Zhangshugang and 9704A. Scale bars, 1 mm. b Pollen grains of
Zhangshugang and 9704A stained with I2-KI. Scale bars, 50 μm; c Scanning electron microscopic analysis of anthers and pollen grains from
Zhangshugang and 9704A at the mature pollen stage. d Sectional observation of anthers from Zhangshugang and 9704A at five different development
stages. Scale bars, 10 μm. Sp, sporogenous cells; Ep, epidermis; En, endothecium; ML, middle layer; T, tapetum; MMC, microspore mother cells; Tds,
tetrads; dTds, death tetrads; Msp, microspores; dTM, dead tapetum and microspores; PG, pollen grains.

maize, highlighting their classification within the PPR protein
family. This analysis demonstrated that the protein sequences of
CaRf are closely related to those in maize (Fig. 3b).

Gene expression analysis and subcellular
localization a strong candidate male fertility
restoration gene
To further identify candidate CaRf , we conducted transcriptome
analysis of flower buds at the tetrad stage from Zhangshugang
and 9704A using RNA sequencing technology. Differential
expression analysis of the entire pepper gene repertoire between
Zhangshugang and 9704A revealed 2048 differentially expressed
genes (DEGs). Among them, 1004 were up-regulated, and 1044
were down-regulated in Zhangshugang compared with 9704A
(Fig. 4a). We examined the distribution of these DEGs across
various chromosomes, noting Chr1 had the highest number and
Chr11 the lowest. Gene Ontology (GO) functional annotation
and enrichment analyses indicated that the majority of these
DEGs were enriched in terms associated with CMS, including
hormone level regulation, oxidoreductase activity, and cell wall
macromolecular metabolism. CMS can arise from disruptions
in nutrient synthesis and metabolism, energy metabolism,
reactive oxygen species metabolism, and hormone synthesis
and metabolism. GO enrichment analysis provided insight into
the specific biological processes influencing pollen fertility and

highlighted key DEGs responsible for 9704A’s sterile phenotype
(Fig. 4b). Kyoto Encyclopedia of Genes and Genomes (KEGG)
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Figure 2. Mapping of the CaRf gene. a Distribution of SNP index on chromosomes. b Fine mapping of CaRf locus. MS, male-sterile; MF, male-fertile; c
Genes within the candidate interval. Genes on the negative and positive strands are indicated on the left and right, respectively. d Predicted structure
of the CaRf-coding protein sequence and alignment of the CaRf-coding protein sequence in Zhangshugang and 9704A.

Table 1. Statistics of DEGs in the candidate interval.

Gene ID Annotation log2F (MF/MS) P-value

Caz06g28850 Protein NTM1-like 9 3.01 1.54E−04
Caz06g28880 Putative late blight resistance protein homolog R1A-3 2.04 2.24E−06
Caz06g28920 Pentatricopeptide repeat protein 4.01 5.26E−11
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Figure 3. Candidate Rf genes reported in pepper and cloned Rf genes in rice and maize. a Sequence similarity between CaRf and cloned Rf genes in
rice and maize. b Sequence similarity between CaRf and previous candidate Rf genes in pepper.

The Zhangshugang genome annotation placed this gene on the
negative strand of chromosome 6 (Chr06:247554451–247574842),
spanning a complex structure with a length of 20 392 bp
(Supplementary Data Fig. S3). Analysis based on the typical
characteristics of the PPR protein family, which lacks introns
and exhibits highly conserved domains [48], raised doubts
about the validity of Caz06g28910 as a genuine gene. Global
alignment with the gapless genome CaT2T [41] revealed that
Caz06g28910 aligned with seven genes in the CaT2T genome
(Supplementary Data Fig. S4), none of which matched a PPR
protein gene of similar length in the CaT2T genome annotation.
This discrepancy suggests that Caz06g28910 might be an
annotation error in the Zhangshugang genome, rectified in the
current CaT2T genome annotation.

To verify the subcellular localization of the remaining two PPR
genes within the interval, we constructed pCAMBIA1300 vectors
expressing Caz06g28920-GFP and Caz06g28930-GFP fusion
proteins under the control of the 35S promoter. These constructs
were introduced into rice protoplasts along with mitochondria-
specific marker Mito-Tracker Red CMXRos-mCherry (RFP) or
with nucleus-specific marker mCherry-fused Ghd7. As shown
in Fig. 5c, the fluorescent microscopy results confirmed that
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Figure 5. Gene expression and subcellular localization analysis. a Expression heat map of genes in the candidate interval at the tetrad stage of bud
development in 9704A and Zhangshugang. b Relative Caz06g28920 expression levels at different stages of flower bud development: microsporocyte,
tetrad, and uninucleate microspore stages, analyzed using quantitative RT–PCR. c Subcellular localization of Caz06g28920 in rice protoplasts:
co-localization of Caz06g28920-GFP and Mito-Tracker Red CMXRos-RFP in the mitochondrion. ∗P < 0.05, ∗∗P < 0.01. GFP, green fluorescent protein; RFP,
Mito-Tracker Red CMXRos-RFP (red). Scale bars, 10 μm.

distribution across the chromosome (Fig. 7a). Statistical details of
SNP positions are cataloged in Supplementary Data Table S7. Map-
ping these SNPs to the pepper Zhangshugang genome assembly
revealed an average inter-SNP distance of 60 kb. Analysis of SNPs
within PepperSNP50K yielded an average PIC of 0.30, crucial for
discerning genetic variations (Supplementary Data Table S2). The
distribution of PIC values is illustrated in Fig. 7b, underscoring the
array’s utility in diverse breeding contexts.

Within PepperSNP50K, 21.3% of SNPs were located within the
gene region, encompassing the upstream and downstream 2 kb
of the gene, UTRs, exons, and introns (Fig. 7c). These SNPs hold
significant potential to influence gene function and are usually
more informative. While this percentage is lower compared with
68% in RiceSNP50 [42], SNPs in PepperSNP50K are evenly dis-
tributed across chromosomes. This distribution ratio is optimal
considering the larger size of the pepper reference genome, which
is 7–8 times that of the rice reference genome, and the rela-
tively smaller proportion of gene regions in peppers. To ensure
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Figure 6. Functional verification of Caz06g28920 through VIGS in F1 (9704A × Zhangshugang) plants. a–c Phenotypic comparison of TRV2:0 (empty
vector control), TRV2:PDS (phytoene desaturase), and TRV2:920 plants. Scale bars: 1.0 cm (a, b) and 0.5 cm (c). d, e Anther dehiscence and pollen grains
of TRV2:0 and TRV2:PDS plants in F1 generation. Scale bars: 1 mm. f–h Anther dehiscence and pollen grains of Caz06g28920 down-regulated
TRV2:920#1, TRV2:920#2, and TRV2:920#3 plants in F1 generation. Scale bars for dehisced anthers and pollen grains: 1 mm. i Caz06g28920 expression
levels in virus-induced F1 plants; gene expression was analyzed using qRT–PCR on flower buds at tetrad and uninucleate microspore stages. Relative
expression levels in TRV2:920#1, TRV2:920#2, and TRV2:920#3 plants were compared with TRV2:0. ∗P < 0.05, ∗∗P < 0.01 (t-test). Relative expression
levels are presented as mean ± standard deviation, n = 3.

due to their superior traits. To improve the efficiency of crossing
between XY21 and QN49, we employed the three-line system
involving 9704A/CaRf to create a new sterile line, XY21A(S(rfrf )).
During the development of the male QN49R restorer line, we uti-
lized the.4054 -95.AiC5V9(T)-.9(R)74.3(V)-.9(2:)]TJ
/F7 1 Tf
15.5754 0 (b)).



https://academic.oup.com/hr/article-lookup/doi/10.1093/hr/uhae223#supplementary-data


10 | Horticulture Research, 2024, 11: uhae223

Figure 7. Design and characteristics of PepperSNP50K. a Distribution of SNPs across the entire pepper genome. b PICs of the selected SNPs. c
Localization of selected SNPs within gene regions and across chromosomes. d MAFs of the selected SNPs.

illustrating that the mechanism of these F1 hybrids can efficiently
verify the reliability of restorer genes (Fig. 9). In our VIGS
experiment, we silenced the expression of the putative restorer
gene in the nucleus in the F1 hybrid (9704A × Zhangshugang)
(Fig. 9). Compared with control plants, the silenced plants
exhibited a substantial reduction in pollen viability and a high
proportion of malformed pollen grains. These findings strongly
support the notion that CaRf indeed functions as a credible
restorer gene (Fig. 6).

There are missense mutations in the Caz06g28920 gene in the
restorer line Zhangshugang and the sterile line 9704A, which
may lead to decreased expression of the Caz06g28920 gene in
the sterile line 9704A or differences in protein function. How-
ever, the causes of Caz06g28920 protein dysfunction in 9704A
remain unclear. We conducted a VIGS experiment targeting the
Caz06g28920 gene in the first-generation hybrid of sterile line
9704A and restorer line Zhangshugang. The results showed that
plants with effective silencing of Caz06g28920 showed obvious
pollen growth deformities and reduced pollen vitality compared
with controls, suggesting that silencing Caz06g28920 interrupts
fertility recovery in the first-generation hybrid. Nevertheless, the
specific underlying mechanism is complex and requires further

elucidation. Future efforts will focus on creating a stable trans-
genic pepper strain carrying the Caz06g28920 gene and identifying
the sterility gene in sterile line 9704A to facilitate deeper molecu-
lar analysis.

Molecular marker-assisted selection technology significantly
accelerates breeding timelines and improves breeding efficiency.
The PARMS markers developed in this study, closely linked to the
Rf gene, offer substantial benefits for molecular-assisted breed-
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Figure 8. Breeding application of CMS/CaRf system. a Development of CMS hybrids for breeding programs. XY21(N(
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heterozygous genotype loci (Aa), and c denotes the number of
homozygous genotype loci (aa) identical to the recipient.

Double haploid technical method
The pepper materials were provided by the Pepper Research Group
of Hunan Xiangyan Seed Industry. The seedlings were cultivated
in a greenhouse with temperature controlled at 26–30◦C during
the day and 15–20◦C at night. Healthy plants were selected during
the flowering period, typically when the plants had bloomed to
four fruits, harvested between 8 and 10.00 a.m. on sunny days.
Buds with petal length equal to the sepals and in the uninucleate
stage during the microspore development period were refriger-
ated at 4◦C for 48 h. On a clean bench, the flower buds were
surface-disinfected with 70% alcohol for 30 s followed by 5%
sodium hypochlorite for 10–12 min and rinsed three times with
sterile water. Using tweezers, anthers were carefully extracted
from the buds, ensuring complete removal of filaments, and inoc-
ulated into the induction medium (NTH basic medium +0.2 mg/l
NAA + 1.0 mg/l KT + 30 g/l sucrose +8 g/l agar powder). The
culture dishes containing inoculated anthers were kept in the
dark at 28◦C until embryoids appeared. Embryoids were then
transferred to the rooting medium (1/2 MS + 0.1 mg/l NAA + 20 g/l
sucrose +8 g/l agar powder) for rooting. Tissue-cultured seedlings
were hardened and transplanted into the substrate. After 2 weeks,
0.2% colchicine was applied to induce diploid formation. The
diploid seedlings were transplanted into a field greenhouse and
managed similarly to field-grown plants. Fruits were harvested
upon ripening.
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