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response (HR), have been extensively researched in relation to SA
[23–25]. Phenylalanine ammonlyase (PAL) as well as isochorismate
synthetase (ICS) pathways are two synthetic pathways of SA in
higher plants [26] and the PAL pathway is considered to be the
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Figure 2. SA is involved in rootstock-scion communication under cold stress. (a–c) SA content in leaves, roots and xylem sap, respectively; (d, e) CsPAL
expression in leaves and roots, respectively; (f, g) PAL activity in leaves and roots, respectively. Samples were taken from the third leaf of plants at the
three-leaves stage following chilling treatments at 0 h and 12 h. Data represent the mean values of four biological replicates, with standard deviations
(± SDs) included. With a significance level of P < 0.05, different letters differ significantly between samples.

the OE-PAL/OE-PAL, WT/OE-PAL, and OE-PAL/WT plants, while
it was noticeably lower in the RNAi-PAL/RNAi-PAL, WT/RNAi-
PAL, and RNAi-PAL/WT plants than in WT/WT plants. According
to these findings, SA signal participates in the rootstock-scion
communication of grafted cucumber, which is dependent on the
PAL pathway.

CsNPR1 participated in Cm rootstock-induced
cold tolerance
To explore the possible molecular regulated mechanism of SA
associated with enhanced cold resistance, we performed tran-

https://academic.oup.com/hr/article-lookup/doi/10.1093/hr/uhae231#supplementary-data
https://academic.oup.com/hr/article-lookup/doi/10.1093/hr/uhae231#supplementary-data
https://academic.oup.com/hr/article-lookup/doi/10.1093/hr/uhae231#supplementary-data
https://academic.oup.com/hr/article-lookup/doi/10.1093/hr/uhae231#supplementary-data


Fu et al. | 5

displayed an increase in CsNPR1
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Figure 6. Overexpression of CsICE1 improves the cold tolerance of Cs/Cs and Cs/Cm cucumbers. (a) CsICE1 expression in grafted cucumbers under cold
stress. (b–d) MDA content, H2O2 and O2

·− accumulation at 25 and 5◦C, respectively; (e, f) DREB1A and COR47 expression at 25 and 5◦C, respectively.
Empty vector (WT)/Cs, OE-CsICE1/Cs, and WT/Cm, OE-CsICE1/Cm transient transgenic cucumber plants were treated at 5◦C for0 Tc
[(WT)/
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