Astrobiology, Genomics, International Collaboration, Microbial Ecology, Systematics
Dr. Brian Hedlund holds a bachelor鈥檚 degree in biology from the University of Illinois, a doctorate in microbiology from the University of Washington, and was a postdoctoral fellow at the University of Regensburg, Germany. Hedlund was hired at UNLV in 2003 and is currently the Greg Fullmer Endowed Professor of Life Sciences. Hedlund has published over 60 peer-reviewed scientific publications and has been a principal investigator on more than $6 million in extramural grants from the National Aeronautics and Space Administration, Department of Energy, National Institutes of Health, and National Science Foundation, including a CAREER award and a large international project funded through the Partnerships for International Science and Education (PIRE) program. Hedlund's research focuses on the microbiology and biogeochemistry of geothermal ecosystems, the genomic exploration of "microbial dark matter", and the role of the intestinal microbiome in prevention of Clostridium difficile infection. Dr. Hedlund is editor for Antonie van Leeuwenhoek journal, a member of Bergey's Manual Trust, and editor for Bergey's Manual of Systematics of Archaea and Bacteria, the authoritative reference manual for microbial taxonomy. Dr. Hedlund regularly serves on grant panel review boards both domestically and internationally and has taught more than 2,500 students at UNLV. As a Research Division Faculty Fellow in the Office of the Vice President for Research and Economic Development, Hedlund is engaged in several projects to support and stimulate research productivity on campus. My research focuses on the ecology of life in high temperature habitats, particularly terrestrial hot springs. The study of high-temperature ecosystems (>73掳C) is a major research frontier because temperature alters the ecology of these systems in ways that are profoundly important but poorly understood and because some springs are hot spots for novel, uncultivated organisms, so-called biological dark matter. To work toward a comprehensive understanding of how individual microorganisms operate as parts of high temperature ecosystems, our group employs an integrated approach to microbial ecology, including thermodynamic modeling, spaciotemporal measurements of chemical species of interest in natural samples and microcosms, microbial cultivation and systematics, and genomics. This research will allow us to better understand the foundations of life in hot springs and expand our knowledge of the diversity of life on Earth. Although much of our research focuses on hot springs of the U.S. Great Basin, we have recently expanded our work to other locations, particularly the Tengchong geothermal region of Yunnan Province in Southwest China. This work is part of the Tengchong PIRE project, which is a large international project funded by the National Science Foundation Partnerships for International Research and Education (PIRE) program. Goals of the PIRE project are to determine how geographic location and geological setting influence microbial community structure and function and to integrate complex datasets through international cooperation.
Astrobiology, Astronomy, Astrophysics, Physics, Planetary Geoscience, Planetary Science
Steve Desch is an astrophysicist studying formation and cycles of molecular activities in novel biomes. By creating computational models, his lab is developing insights on historic events and climate change. Desch鈥檚 lab has secured funding by NASA to study geochemical cycles on exoplanets in search for signs of life. He has created models for water on moons, asteroids, and other planetary bodies. Desch is a professor for the School of Earth and Space Exploration. Asteroid 9926 Desch is named after him.