Antibodies, B Cells, Health, HIV, Immune System, Immunology, Infectious Disease, Influenza, Medicine, Pandemic, T Cells, Viruses
Shane Crotty, Ph.D., and his team study immunity against infectious diseases. They investigate how the immune system remembers infections and vaccines. By remembering infections and vaccines, the body is protected from becoming infected in the future. Vaccines are one of the most cost-effective medical treatments in modern civilization and are responsible for saving millions of lives. Yet, good vaccines are very difficult to design, and very few new vaccines have been made in the past 10 years. A better understanding of immune memory will facilitate the ability to make new vaccines. Dr. Tony Fauci, NIH, referred to some of the Crotty lab work as “exceedingly important to the field of immunogen design.”
Dr. Crotty is a member of the LJI Coronavirus Task Force. The Crotty Lab, in close collaboration with the lab of LJI Professor Alessandro Sette, Dr. Biol. Sci., was the first to publish a detailed analysis of the immune system’s response to SARS-CoV-2, the virus that causes COVID-19 (). The made a number of important findings. Most importantly, it showed that the immune system activates all three major branches of “adaptive immunity” (which learns to recognize specific viruses) to try to fight the virus: CD4 “helper” T cells , CD8 “killer” T cells, and antibodies. The LJI team found good immune responses to multiple different parts of SARS-CoV-2 (imagine the virus is made out of legos, and the immune system can recognize different individual legos), including the Spike protein, which is the main target of almost all COVID-19 vaccine efforts.
Dr. Crotty has a major focus studying human immune responses to vaccines. His lab is hard at work on candidate HIV vaccines with the CHAVID consortium. His lab is also hard at work on vaccine strategies for influenza, strep throat, and COVID-19. The Crotty lab studies new vaccine ideas and strategies that may be applicable to many diseases, based on a fundamental understanding of the underlying immune responses, and how the cells of the immune system interact.
Dr. Crotty regularly does media outreach on vaccines and immunity to infectious diseases. Dr. Crotty is also the author of Ahead of the Curve, a biography of Nobel laureate scientist David Baltimore, published in 2001, and reviewed in The Wall Street Journal and other publications. He earned his B.S. in Biology and Writing from Massachusetts Institute of Technology (MIT) in 1996, and his Ph.D. in Molecular Biology/Virology from the University of California, San Francisco (UCSF) in 2001.
Antibodies, Biology, Coronavirus, cryo-electron microscopy, Ebola, Ebola Virus, Global Health, Health, Infectious Disease, Lassa Fever, Marburg, Medicine, Rabies, Structural Biology, Virology, zoonotic disease
Erica Ollmann Saphire, Ph.D. serves as President and CEO of the La Jolla Institute for Immunology. She is one of the world’s leading experts in pandemic and emerging viruses, such as Ebola, Marburg and Lassa. Dr. Saphire directs the Viral Hemorrhagic Fever Immunotherapeutic Consortium (VIC), an NIH-funded Center of Excellence in Translational Research. The VIC unites 43 previously competing academic, industrial and government labs across five continents to understand which antibodies are most effective in patients and to streamline the research pipeline to provide antibody therapeutics against Ebola, Marburg, Lassa and other viruses. Dr. Saphire's research explains, at the molecular level, how and why viruses like Ebola and Lassa are pathogenic and provides the roadmap for developing antibody-based treatments. Her team has solved the structures of the Ebola, Sudan, Marburg, Bundibugyo and Lassa virus glycoproteins, explained how they remodel these structures as they drive themselves into cells, how their proteins suppress immune function and where human antibodies can defeat these viruses. A recent discovery revealed why neutralizing antibodies had been so difficult to elicit against Lassa virus, and provided not only the templates for the needed vaccine, but the molecule itself: a Lassa surface glycoprotein engineered to remain in the right conformation to inspire the needed antibody response. This molecule is the basis for international vaccine efforts against Lassa.
Dr. Saphire is the recipient of numerous accolades and grants, including the Presidential Early Career Award in Science and Engineering presented by President Obama at the White House; the Gallo Award for Scientific Excellence and Leadership from the Global Virus Network; young investigator awards from the International Congress of Antiviral Research, the American Society for Microbiology, American Society for Biochemistry and Molecular Biology, and the MRC Centre for Virus Research in the United Kingdom; the Investigators in the Pathogenesis of Infectious Disease Award from the Burroughs Wellcome Fund, and the Surhain Sidhu award for the most outstanding contribution to the field of diffraction by a person within five years of the Ph.D. Dr. Saphire has been awarded a Fulbright Global Scholar fellowship from the United States Department of State and a Mercator Fellowship from the German research foundation, Deutsche Forschungsgemeinschaft, to develop international collaborations around human health and molecular imaging through cryoelectron microscopy.
Dr. Saphire received a B.A. in biochemistry and cell biology and ecology and evolutionary biology from Rice University in Houston, Texas, and a Ph.D. in molecular biology from Scripps Research. She stayed on at Scripps Research as a Research Associate to conduct postdoctoral research and rose through the ranks to become a Professor in the Department of Immunology and Microbiology. In early 2019, Dr. Saphire joined La Jolla Institute for Immunology to establish a molecular imaging facility for cryo-electron microscopy (cryo-EM) at the Institute. The extremely detailed images produced by cryo-EM reveal precisely how essential mechanisms of the immune system operate.
Antibodies, Computational Biology, Computer Science, Data Science, genomic analysis, Genomics, Health, Immune System, Immunology, Infectious Disease, Medicine
Dr. Tal Einav’s accomplishments included the development of sophisticated computational methods to understand viral behavior and predict how individuals react to vaccination or infection. This research earned Einav a prestigious Damon Runyon Quantitative Biology Fellowship and emphasized the importance of pursuing machine learning to analyze big data in immunology.
“We have these tremendous datasets that we’re just barely tapping into,” says Einav. These data allow Einav to understand the immune response in different contexts, from the young to the elderly, from healthy people to individuals who are immunocompromised. All with the goal to discover key patterns that let us understand and harness our immunity. Einav’s work has already demonstrated that blending biophysics and computer science enables researchers to predict the antibody response against new viral variants.
This work paves the way for a fundamentally new form of personalized medicine. For example, Einav imagines tailoring an individualized vaccine strain or dosage based on a patient’s specific antibody repertoire to create a stronger response that lasts for years, if not their entire life.