News — A team of physicists from , the , and Harvard has reached a key milestone toward next-generation superconductors.
What started as a lunch conversation at Perimeter Institute in Waterloo, Canada, became an important step toward developing room-temperature superconductors.
The researchers devised an explanation of the transition phase to superconductivity, or 鈥減seudogap鈥 phase, which is one of the last obstacles in the development of these types of superconductors.
The work, co-authored by Perimeter Associate Faculty member and Associate Graduate Student , was published in .
The result relied on close collaboration with team members (a Harvard professor and Perimeter Distinguished Visiting Research Chair) and University of Waterloo Associate Physics and Astronomy Professor .
鈥淭his amazing scientific collaboration actually came about by chance over lunch at the Perimeter Institute between Subir and myself,鈥 said Hawthorn.
Hawthorn showed Sachdev his latest experimental data on the superconducting material, YBa2Cu3O6+x, which had unexplained temperature dependence. Sachdev had a theory but needed expert help with the complex set of calculations to prove it. That鈥檚 where Melko and Hayward stepped in and developed the computer code to solve Sachdev鈥檚 equations.
Melko and Sachdev already knew each other through Perimeter Institute, making for a smooth working relationship and relatively speedy result.
鈥淭he results all came together in a matter of weeks,鈥 said Melko. 鈥淚t really speaks to the synergy we have between Waterloo and the Perimeter Institute.鈥
To understand why room-temperature superconductivity has remained so elusive, physicists have turned their sights to the phase that occurs just before superconductivity takes over: the mysterious 鈥減seudogap鈥 phase.
鈥淯nderstanding the pseudogap is as important as understanding superconductivity itself,鈥 said Melko.
Superconductivity is the phenomenon whereby electricity flows under zero resistance, and thus no energy loss. But most materials need to be cooled to ultra-low temperatures with liquid helium in order to achieve a superconductive state.
YBa2Cu3O6+x is one of the few materials that is superconducting at higher temperatures. Even so, it is not yet possible to achieve superconductivity in this material above -179 C.
In this study, researchers found YBa2Cu3O6+x oscillates between two quantum states during the pseudogap, one of which involves charge-density wave fluctuations. These periodic fluctuations in the distribution of the electrical charges are what destabilize the superconducting state above the critical temperature.
Once the material is cooled below the critical temperature, the strength of these fluctuations falls and the superconductivity state takes over.
Next, the group plans to extend their work both theoretically and experimentally to more deeply understand and exploit the fundamental nature of superconducting materials.
ABOUT PERIMETER INSTITUTE is an independent, non-profit, scientific research organization working to advance our understanding of physical laws and develop new ideas about the very essence of space, time, matter, and information. Located in Waterloo, Ontario, Canada, Perimeter also provides a wide array of research training and educational outreach activities to nurture scientific talent and share the importance of discovery and innovation among students, teachers, and the general public. In partnership with the Governments of Ontario and Canada, Perimeter is a successful example of public-private collaboration in scientific research, training, and outreach.
FOR MORE INFORMATION, CONTACT:Eamon O鈥橣lynnExternal Relations SpecialistPerimeter Institute for Theoretical Physicseoflynn[at]perimeterinstitute[dot]ca(519)569.7600 x5071