News — Two for two! A duo of interacting galaxies commemorates the second science anniversary of NASA’s James Webb Space Telescope, which takes constant observations, including and highly detailed data known as . Its operations have led to a “parade” of by astronomers around the world.

“Since President Biden and Vice President Harris unveiled the first image from the James Webb Space Telescope two years ago, Webb has continued to unlock the mysteries of the universe,” said NASA Administrator Bill Nelson. “With remarkable images from the corners of the cosmos, going back nearly to the beginning of time, Webb’s capabilities are shedding new light on our celestial surroundings and inspiring future generations of scientists, astronomers, and explorers.”

“In just two years, Webb has transformed our view of the universe, enabling the kind of world-class science that drove NASA to make this mission a reality,” said Mark Clampin, director of the Astrophysics Division at NASA Headquarters in Washington. “Webb is providing insights into longstanding mysteries about the early universe and ushering in a new era of studying distant worlds, while returning images that inspire people around the world and posing exciting new questions to answer. It has never been more possible to explore every facet of the universe.”

The telescope’s specialization in capturing — which is beyond what our own eyes can detect — shows these galaxies, collectively known as Arp 142, locked in a slow cosmic dance. Webb’s observations, which combine near- and mid-infrared light from Webb’s (Near-Infrared Camera) and (Mid-Infrared Instrument), respectively, clearly show that they are joined by a haze represented in blue that is a mix of stars and gas, a result of their mingling.

Their ongoing interaction was set in motion between 25 and 75 million years ago, when the Penguin (individually cataloged as NGC 2936) and the Egg (NGC 2937) completed their first pass. They will go on to shimmy and sway, completing several additional loops before merging into a single galaxy hundreds of millions of years from now.

Let’s Dance!

Before their first approach, the Penguin held the shape of a spiral. Today, its gleams like an eye, its unwound arms now shaping a beak, head, backbone, and fanned-out tail.

Like all spiral galaxies, the Penguin is still very rich in gas and dust. The galaxies’ “dance” gravitationally pulled on the Penguin’s thinner areas of gas and dust, causing them to crash in waves and form stars. Look for those areas in two places: what looks like a fish in its “beak” and the “feathers” in its “tail.”

Surrounding these newer stars is smoke-like material that includes carbon-containing molecules, known as , which Webb is exceptional at detecting. Dust, seen as fainter, deeper orange arcs also swoops from its beak to tail feathers.

In contrast, the Egg’s compact shape remains largely unchanged. As an elliptical galaxy, it is filled with aging stars, and has a lot less gas and dust that can be pulled away to form new stars. If both were spiral galaxies, each would end the first “twist” with new star formation and twirling curls, known as tidal tails.

Another reason for the Egg’s undisturbed appearance: These galaxies have approximately the same mass or heft, which is why the smaller-looking elliptical wasn’t consumed or distorted by the Penguin.

It is estimated that the Penguin and the Egg are about 100,000 light-years apart — quite close in astronomical terms. For context, the Milky Way galaxy and our nearest neighbor, the Andromeda Galaxy, are about 2.5 million light-years apart. They too will interact, but not for about .

Now, look to the top right to spot a galaxy that is not at this party. This edge-on galaxy, cataloged PGC 1237172, is 100 million light-years closer to Earth. It’s also quite young, teeming with new, blue stars.

Want one more party trick? Switch to to see PGC 1237172 practically disappear. Mid-infrared light largely captures cooler, older stars and an incredible amount of dust. Since the galaxy’s stellar population is so young, it “vanishes” in mid-infrared light.

Also take a moment to scan the background. Webb’s image is overflowing with distant galaxies. Some take spiral and oval shapes, like those threaded throughout the Penguin’s “tail feathers,” while others scattered throughout are shapeless dots. This is a testament to the sensitivity and resolution of the telescope’s infrared instruments. (Compare Webb’s view to the that combines infrared light from NASA’s retired Spitzer Space Telescope and near-infrared and visible light from NASA’s Hubble Space Telescope.) Even though these observations only took a few hours, Webb revealed far more distant, redder, and dustier galaxies than previous telescopes – one more reason to expect Webb to continue to expand our understanding of everything in the universe.

Want more? through the image, “fly to” it in a , and Webb’s image to the Hubble Space Telescope’s.

Arp 142 lies 326 million light-years from Earth in the constellation Hydra.

For more information or to download full-resolution images and videos, visit

The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).

MEDIA CONTACT
Register for reporter access to contact details
Â鶹´«Ă˝: Vivid Portrait of Interacting Galaxies Marks Webb's Second Anniversary

Credit: NASA, ESA, CSA, STScI, J. DePasquale (STScI)

Caption: The distorted spiral galaxy at center, the Penguin, and the compact elliptical at left, the Egg, are locked in an active embrace. This near- and mid-infrared image combines data from NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) and MIRI (Mid-Infrared Instrument), and marks the telescope’s second year of science. Webb’s view shows that their interaction is marked by a glow of scattered stars represented in blue. Known jointly as Arp 142, the galaxies made their first pass by one another between 25 and 75 million years ago, causing “fireworks,” or new star formation, in the Penguin. The galaxies are approximately the same mass, which is why one hasn’t consumed the other.

Â鶹´«Ă˝: Vivid Portrait of Interacting Galaxies Marks Webb's Second Anniversary

Credit: NASA, ESA, CSA, STScI, J. DePasquale (STScI)

Caption: NASA’s James Webb Space Telescope’s mid-infrared view of interacting galaxies Arp 142 seems to sing in primary colors. The Egg shows up as a tiny, teal-colored oval, because it is made up of old stars and has lost or used up most of its gas and dust. At right, the Penguin’s star-forming regions are represented in pink and purple, and contain smoke-like material known as polycyclic aromatic hydrocarbons.

Â鶹´«Ă˝: Vivid Portrait of Interacting Galaxies Marks Webb's Second Anniversary

Credit: NASA, ESA, CSA, STScI, J. DePasquale (STScI)

Caption: NASA’s Hubble Space Telescope captured visible light when observing Arp 142, nicknamed the Penguin and the Egg, with its Wide Field Camera 3 (WFC3) in 2013. At right is NASA’s James Webb Space Telescope’s near-infrared light view of the same region, taken with NIRCam (Near-Infrared Camera). In Hubble’s visible light image, a dark brown dust lane begins across the Penguin’s “beak” and extends through its body and along its back. In Webb’s near-infrared view, this dust lane is significantly fainter. The Egg itself looks similar in both images, but in Webb’s view, the galaxy shines so brightly that it causes diffraction spikes to slightly extend its gleam. The galaxy at top right appears about the same size, but many more pinpricks of stars appear in Webb’s view.