News release for PPPL paper on update to TRANSP code to better simulate the interaction between energetic particles and instabilities in fusion plasmas.
Researchers at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) have for the first time simulated the formation of structures called "plasmoids" during Coaxial Helicity Injection (CHI), a process that could simplify the design of fusion facilities known as tokamaks. Researchers at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) have for the first time simulated the formation of structures called "plasmoids" during Coaxial Helicity Injection (CHI), a process that could simplify the design of fusion facilities known as tokamaks. The findings, reported in the journal Physical Review Letters, involve the formation of plasmoids in the hot, charged plasma gas that fuels fusion reactions. These round structures carry current that could eliminate the need for solenoids 鈥 large magnetic coils that wind down the center of today's tokamaks 鈥 to initiate the plasma and complete the magnetic field that confines the hot gas.
"Understanding this
Timothy Stoltzfus-Dueck, a physicist at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL), has demonstrated a novel method that scientists can use to manipulate the intrinsic 鈥 or self-generated 鈥 rotation of hot, charged plasma gas within fusion facilities called tokamaks.
Researchers at the U.S. Department of Energy鈥檚 (DOE) Princeton Plasma Physics Laboratory (PPPL) have developed a detailed model of the source of a puzzling limitation on fusion reactions. The findings, published this month in Physics of Plasmas, complete and confirm previous PPPL research and could lead to steps to overcome the barrier if the model proves consistent with experimental data.
Scientist Elena Belova of the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) and a team of collaborators have proposed an explanation for why the hot plasma within fusion facilities called tokamaks sometimes fails to reach the required temperature, even as researchers pump beams of fast-moving neutral atoms into the plasma in an effort to make it hotter.
An enduring astronomical mystery is how stars and galaxies acquire their magnetic fields. Physicists Jonathan Squire and Amitava Bhattacharjee at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have found a clue to the answer in the collective behavior of small magnetic disturbances.
A team of physicists led by Stephen Jardin of the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) has discovered a mechanism that prevents the electrical current flowing through fusion plasma from repeatedly peaking and crashing. This behavior is known as a "sawtooth cycle" and can cause instabilities within the plasma's core.