Research Alert
Abstract
News — As freshwater demand is constantly increasing, via (MD) emerges as a promising water production technology, especially when combined with the use of membranes. Here, following our previous work [1] we extend our universal, environmentally friendly, plasma nanotexturing and hydrophobization technology for rendering practically any type of membrane superhydrophobic and oleophobic. Thus, we render three commercial porous membranes superhydrophobic, namely, polyvinylidene (PVDF 0.45 μm) (initially hydrophobic), polyethersulfone (PES 1.20 μm) and nylon (NY 1.20 μm) (both initially hydrophilic). We demonstrate superhydrophobic, superoleophobic (down to 40mn/m surface tension) and oleophobic properties (down to 30mN/m surface tension) for PVDF, PES and Nylon membranes thus paving the way for their use with waste streams. Moreover, the technology presented herein not only improves existing hydrophobic membranes but may lead to elimination of the use of Teflon-like fluorinated hydrophobic membranes altogether in the future, thereby contributing to the PFAS (Per and Poly Fluoro Alkyl Substances) and Teflon-like membrane use reduction. We subsequently evaluated the performance of the treated membranes in (DCMD) for of sea-like water (35 g/L NaCl). All membranes showed enhanced water flux with an increase of >13% compared to the pristine hydrophobic PVDF membranes for at least 2 h of continuous operation, with salt rejection exciding 99.99%.