News — Tomatoes, a staple crop worldwide, face significant challenges from pests such as aphids and mites, which wreak havoc on yields and quality. Overreliance on chemical pesticides has exacerbated the problem, with pests evolving resistance and the environmental toll of pesticides raising alarm bells. To meet these challenges, scientists are turning to wild tomato species like Solanum habrochaites, which naturally possess robust defense mechanisms. Deciphering these mechanisms is crucial for sustainable agriculture and ensuring food security amid growing pest pressures.
A team from Northeast Agricultural University in China has made a landmark contribution to this endeavor, publishing their in on January 9, 2024. The study employed cutting-edge metabolomics and transcriptomics techniques to dissect the phenylpropanoid biosynthesis pathway in Solanum habrochaites, identifying its critical role in insect resistance.
The researchers found that Solanum habrochaites produces significantly higher levels of phenylpropanoids and flavonoids, compounds pivotal in deterring phytophagous insects. Comparing the wild species to the cultivated tomato variety ‘Ailsa Craig,’ the study revealed that Solanum habrochaites boasts uniquely structured glandular trichomes capable of storing more anti-insect metabolites. Key genes such as Sl4CLL6 were identified as central players in this defense strategy; silencing these genes resulted in diminished resistance to mites, confirming their critical role. These insights not only deepen our understanding of plant-insect dynamics but also lay the groundwork for breeding pest-resistant crops using wild tomato genetics.
Dr. Aoxue Wang, one of the study’s corresponding authors, emphasized the broader significance of this work: “Our findings offer a significant step forward in understanding the natural defense mechanisms of tomatoes. By harnessing the genetic resources of wild tomato species, we can potentially develop more resilient and sustainable agricultural practices.”
The potential applications of this research extend beyond tomatoes. By leveraging the genetic wealth of wild plants, scientists can pioneer innovative solutions for pest management across diverse crops. This approach promises to benefit farmers by reducing crop losses while fostering environmentally friendly farming practices. The study also invites further exploration of other wild species that may harbor similar genetic treasures, ensuring that agriculture can meet the challenges of a changing world sustainably.
###
References
DOI
Original Source URL
Funding information
This work was supported by the National Natural Science Foundation of China (grants U22A20495 and 32072588) and the National Natural Science Foundation of Heilongjiang Province (LH2021C032).
About
is an open access journal of Nanjing Agricultural University and ranked number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. The journal is committed to publishing original research articles, reviews, perspectives, comments, correspondence articles and letters to the editor related to all major horticultural plants and disciplines, including biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.